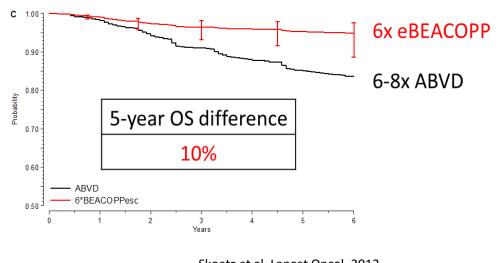


## BrECADD/HD21 and beyond

Peter Borchmann
German Hodgkin Study Group
University Hospital Cologne

## COIs

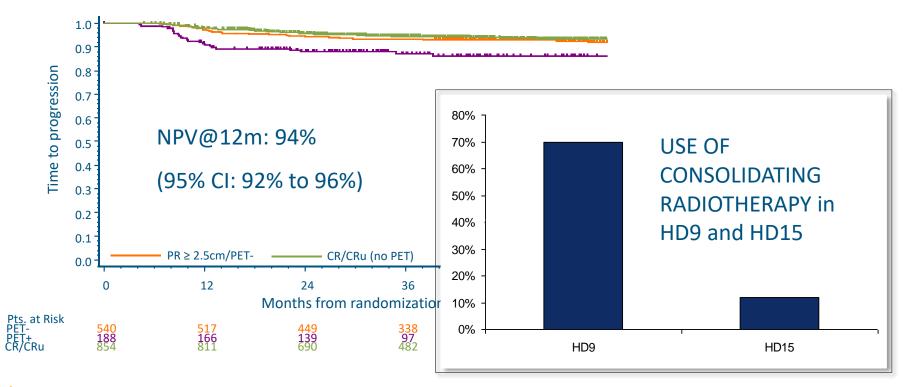

| Employment, management position   | _                                                                                            |
|-----------------------------------|----------------------------------------------------------------------------------------------|
| Advisory/expert activity          | Takeda Oncology, BMS, Roche, Amgen, Novartis, Miltenyi Biotech, Gilead, MSD, Incyte, Beigene |
| Ownership (shares, stocks, funds) | _                                                                                            |
| Patent, copyright, sales license  | _                                                                                            |
| Honoraria                         | Takeda Oncology, Novartis, BMS, Roche, MSD,<br>Celgene, Miltenyi Biotech, Gilead, Abbvie     |
| Funding scientific research       | Takeda Oncology, MSD, Incyte, Amgen                                                          |
| Other financial relationships     | _                                                                                            |
| Intangible conflicts of interest  | _                                                                                            |



# FROM INTENSIFICATION TO INDIVIDUALISATION



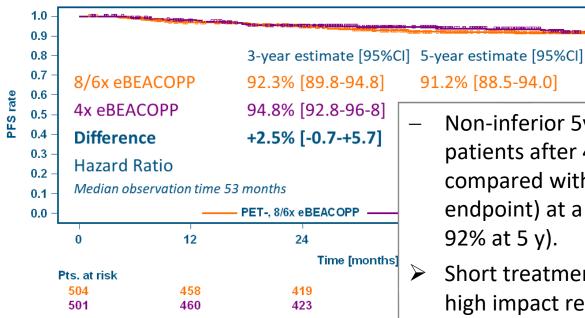
### ABVD or BEACOPP? There is no reliable "second shot", but




Skoetz et al, Lancet Oncol, 2012

- Obvious OS benefit for eBEACOPP; however, about 60%-70% of the patients could have been primarily cured just with ABVD: those are "overtreated" with eBEACOPP.
- IPS can predict outcome with ABVD, but no longer with the eBEACOPP.
- How can we de-escalate eBEACOPP?




## Metabolic response assessment: individualisation by PET-guided radiotherapy in HD15

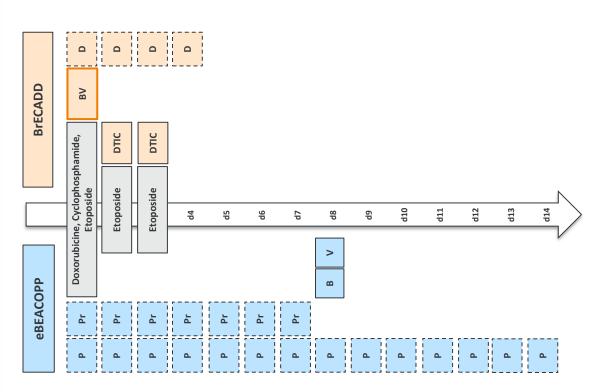




## Early interim PET-guided individualised chemotherapy: GHSG HD18

91.2% [88.5-94.0]



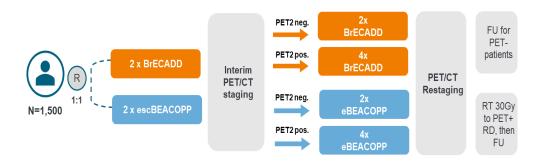

- Non-inferior 5y PFS for PET-2-negative patients after 4 cycles of eBEACOPP compared with 8/6 cycles (primary endpoint) at a very high level (95% at 3y, 92% at 5 y).
- Short treatment period of 3 months with high impact regarding patients safety, PROs and social re-integration, but
- eBEACOPP, still.



## FROM BEACOPP TO BRECADD



## GHSG HD21: eBEACOPP optimization with Brentuximab vedotin



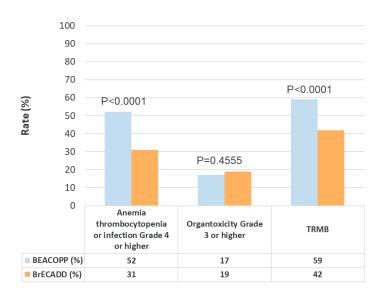

- The Kairos backbone doxorubicin, cyclophosphamide, etoposide was retained and pre-defined dose deescalation steps (DL 4, 3, 2, 1, BL) were identical in both groups
- Introducing Brentuximab Vedotin
   (BV), therefore omitting Bleomycin
   (B, pulmonary toxicity) and Vincristin
   (V, neuropathy)
- Replacing Procarbazine (Pr) with the less geno- and gonadotoxic
   Dacarbazine (DTIC)
- Replacing 14 days of **Prednisone** (P) to 4 days of **Dexamethasone** (D)



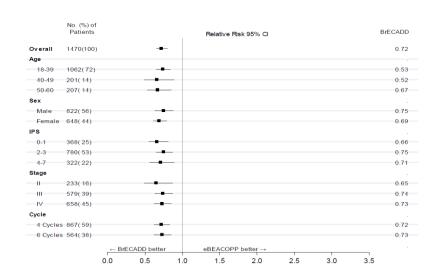
### GHSG HD21 study design and patient flow

HD21 is an international randomized, open-label, phase 3 study of BrECADD versus eBEACOPP in adult patients < 60 yo with previously untreated, AS-cHL




1482/1500 patients recruited in nine countries and 233 study sites are available for analysis

#### **Co-primary objectives:**


- Demonstrate superior tolerability defined by treatment-related morbidity (TRMB) with BrECADD.
- Demonstrate non-inferior efficacy of 4-6 x BrECADD compared with 4-6 x BEACOPP determined by PFS (NI margin 6%, HR to be excluded 1.69)



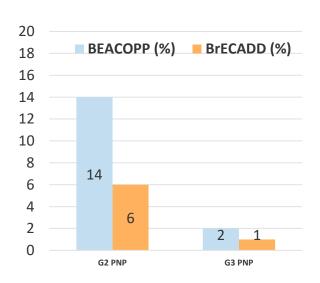
### GHSG HD21 primary safety endpoint TRMB analyses results



Per-protocol analysis of TRMB° C-Rel-Risk of BrECADD = **0.70**; 95%-Cl = **0.63** – **0.78**; p < **0.0001** 



Relative risk for treatment-related morbidity in subgroups


## **GHSG HD21** clinical implications of lower TRMB

#### Transfusion frequencies

|                       | eBEACOPP (%) | BrECADD (%) |
|-----------------------|--------------|-------------|
| red cell transfusion* | 53           | 24          |
| platelet transfusion* | 34           | 17          |

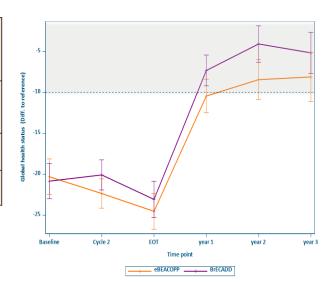
|                           | Red blood cell  | Platelet tr    | ansfusions      |                |
|---------------------------|-----------------|----------------|-----------------|----------------|
| Total                     | <u>eBEACOPP</u> | <u>BrECADD</u> | <u>eBEACOPP</u> | <u>BrECADD</u> |
| Number of<br>Transfusions | 1670            | 647            | 637             | 277            |

#### Sensory polyneuropathy

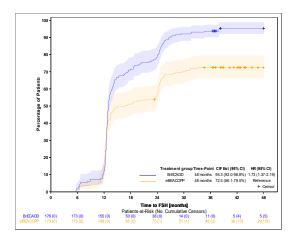


<sup>\*</sup>pts with at least one transfusion




## BrECADD: some key aspects of optimization on tolerability

## Full resolution adverse events at 12 months FU in 675/677 patients (> 99%)


| Treatment related morbidity                             | BrECADD<br>(n=677) |
|---------------------------------------------------------|--------------------|
| Anemia, thrombocytopenia, or infection of CTCAE grade 4 | 0 (0)              |
| Organ toxicity of CTCAE grade 3-4                       | 2 (<1)             |
| Treatment related morbidity                             | 2 (<1)             |

- 2/742 sAML/MDS (0.27%)
- no Tx-related mortality

Normalized global health status with BrECADD starting at 12 months



Recovery of gonadal function and normalized birth rate (compared to healthy control)



- FSH recovery in women96%, men 86%
- Normal birth rate in women



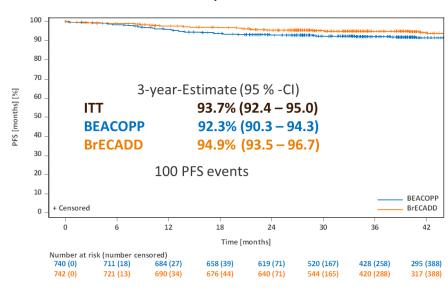
## HD21 PET-assessment and treatment exposure

|                                       | BEACOPP<br>N=740 (%) | BrECADD<br>n=742 (%) |
|---------------------------------------|----------------------|----------------------|
| Response at PET/CT2                   |                      |                      |
| Central PET2 review (post-amendment)  | 669 (90)             | 677 (91)             |
| CMR (DS1-3) PET/CT2                   | 430/669 (64)         | 430/677 (64)         |
| Response at EOT                       |                      |                      |
| RTx recommended (i.e. no mCR, DS 4,5) | 127 (17)             | 125 (17)             |
| RTx documented                        | 112 (15)             | 104 (14)             |

|                  | BEACOPP |       | BrEC | ADD  |
|------------------|---------|-------|------|------|
| ITT-PFS          | N=7     | 740   | N=7  | 742  |
| Number of cycles | N       | 0/    | NI   | 0/   |
| started/expected | IN      | %     | N    | %    |
| 4/4*             | 427     | 57.7  | 425  | 57.3 |
| 5/4              | -       | -     | 2    | 0.3  |
| 6/4              | 2       | 2 0.3 |      |      |
|                  |         |       |      |      |
| 4/6              | 8       | 1.1   | 7    | 0.9  |
| 5/6              | 5       | 0.7   | 3    | 0.4  |
| 6/6**            | 278     | 37.6  | 284  | 38.3 |

98% of all patients received the scheduled number of treatment cycles

## HD21 PFS endpoint at interim analysis (40 months mFU)

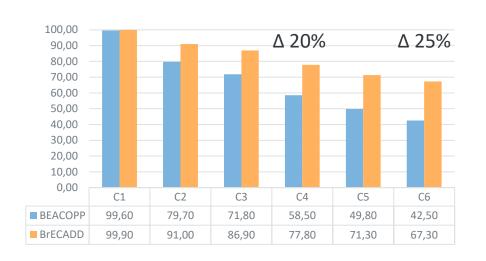

#### PFS events at interim analysis

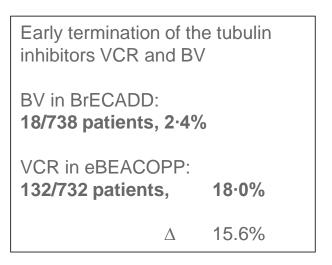
|                             | eBEACOPP<br>N=740 |     | BrECADD<br>N=742 |     |
|-----------------------------|-------------------|-----|------------------|-----|
|                             | n                 | %   | n                | %   |
| Progression/Relapse         | 55                | 7.4 | 32               | 4.3 |
| Progression                 | 14                | 1.9 | 5                | 0.7 |
| Early Relapse, FU <= 1 year | 23                | 3.1 | 11               | 1.5 |
|                             |                   |     |                  |     |
| Late Relapse, FU > 1 year   | 18                | 2.4 | 16               | 2.2 |
|                             |                   |     |                  |     |
| Death without PRO or REL    | 6                 | 0.9 | 7                | 0.9 |
|                             | -                 |     |                  |     |
| PFS events, total           | 61                | 8.4 | 39               | 5.3 |

Reduction of early PFS events with BrECADD

> KAIROS principle

#### PFS at interim analysis





With a HR of 0.63 (99%-CI: 0.37 – 1.07) non-inferiority of BrECADD was fully established at IA.



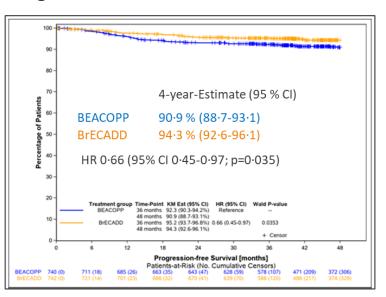
## HD21: impact of tolerability on feasibility and efficacy?

Patients treated with full dose (cyclo, etoposide, doxo) per cycle (%)

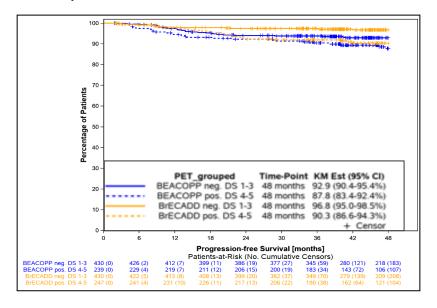




The unexpected and positive effect of BrECADD on efficacy might be explained by both


- use of the targeted agent BV, and
- maintenance of higher dose-levels in more patients with BrECADD




## HD21 final analysis: BrECADD is superior to eBEACOPP (mFU 48 m)

<sup>1</sup> Amendment for test on superiority was initiated by study investigators request and approved by the regulatory authority (PEI) to ensure study integrity.

#### Progression-free survival



#### PFS by risk factor PET2-status





## **GHSG HD21** summary and conclusion

#### BrECADD is significantly better tolerated than eBEACOPP and

- recovery of TRMB after 12 months in > 99% of patients, normalization of QoL (!), no relevant impact on gonadal function, no TRM, very low sMDS/AML rate (2/742, 0.27%), although
- relative dose intensity was higher with BrECADD due to improved feasibility (up to 25% higher rate of full dose Tx), and only 2% early termination of the tubulin inhibitor MMAE.

**Efficacy of BrECADD is superior to eBEACOPP** reaching an unprecedented **PFS of 94.3%** with <u>mature</u> FU of 4-years, although

- most patients (64%) receive only 4 cycles (i.e. 12 weeks) of therapy, and
- cumulative doses of cytotoxic drugs below critical thresholds (e.g. doxorubicin at 160 mg/m² for 2/3 of patients)
- > Overall, we thus feel very safe to recommend BrECADD as standard therapy based on these mature data.

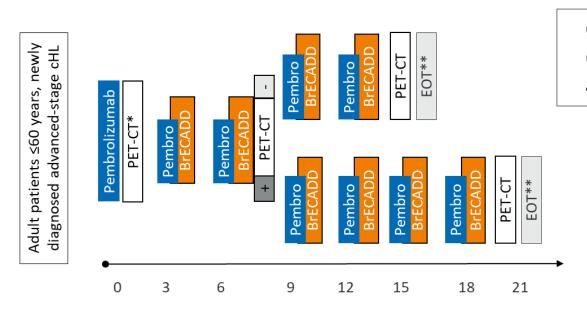


## Advanced Hodgkin lymphoma: beyond S1826 and HD21

#### 1. Response assessment for treatment individualization:

- We need to improve our test-method aiming at less false positive findings. MTV seems to be superior to DS. MRD should be evaluated.
- Having a better tool than DS, more patients will need only a reduced treatment intensity with low cumulative doses of cytotoxic drugs and without cons. RT.

#### 2. Re-evaluating chemotherapy intensity in combination with PD1 inhibition:


AVD might not be enough, BrECADD might be more than enough.

#### 3. Baseline risk assessment for treatment individualization:

We need to identify patients highly susceptible to PD1 blockade upfront



## *Individualized immuno-chemotherapy* for newly diagnosed advanced stage cHL patients: Pembro-FLASH pilot.



Can we cure more than 64% of patients with only 4 cycles of BrECADD?

START Q2 2025

\* For scientific purpose

\*\* RT to PET pos RD



#### Thank you very much for your attention!



Chairman: P. Borchmann

Former-Chairman: A. Engert

**Honorary Chairman:** V. Diehl

Pathology: F. Fend, S. Hartmann, W. Klapper, G. Ott,

A. Rosenwald

Radiotherapy: C. Baues, H. T. Eich

Nuclear Medicine: M. Dietlein, C. Kobe

Laboratory: S. Borchmann

Physicians: K. Behringer, B. Böll, P. Bröckelmann,

D. Eichenauer, J. Ferdinandus, S. Gillessen, A.S. Robertz,

B. v. Tresckow, J. Welters

TRIAL COORDINATION CENTER

Head: M. Fuchs

Trial physicians: C. Jaworek, H. Tharmaseelan

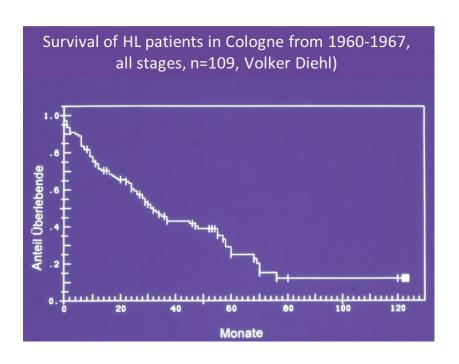
Data Management: B. Andrulevicius, B. Koch, S. Ladewig,

B. van den Hoonaard

Project Management: S. Kreitz, N. Moroz, I. Oosterhaar, S. Sevimli-Abdis,

M. Weber, L. Wolf

Quality Management: I. Oosterhaar


Database / IT: O.W. Abudu, L. Ganß, T. Schober

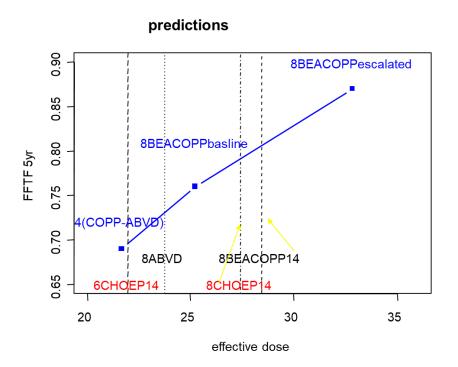
Statistics: I. Bühnen, J. Jablonski, H. Kaul, G. Schneider

Assistant / Secretary: K. Rust, M. Schumacher, K. Tittmann



### Hodgkin Lymphoma: a miraculous and fatal disease of young adults




Volker Diehl with doctors and patients at ISHL12 (2022)





## How eBEACOPP has been developed: the "Kairos Principle" and the "Hasenclever model"

#### The change of COPP/ABVD to BEACOPP A Adriamycin **B** Bleomycin **B** Bleomycin E Etoposide V Vinblastin A Adriamycin D Dacarbazin C Cyclophosphamid C Cyclophosphamid d 15 O Vincristin O Vincristin P Procarbazin P Procarbazin P Prednison P Prednison d 1 restart: d 28 Restart d 21 Aim: To optimize the schedule 1. Incorporate active drugs 2. Shorten intervals 3. Intensify dose

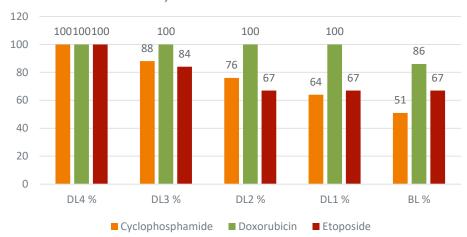




## The prognostic value of the IPS using a more effective treatment than ABVD

| IPS        | COPP/ABVD<br>(%)  | bBEACOPP<br>(%) | P eBEACOPP<br>(%) |  |  |  |
|------------|-------------------|-----------------|-------------------|--|--|--|
|            | Early progression |                 |                   |  |  |  |
| Good (0–1) | 10                | 6               | 2                 |  |  |  |
| Fair (2-3) | 11                | 9               | 2                 |  |  |  |
| Poor (4–7) | 18                | 9               | 3                 |  |  |  |

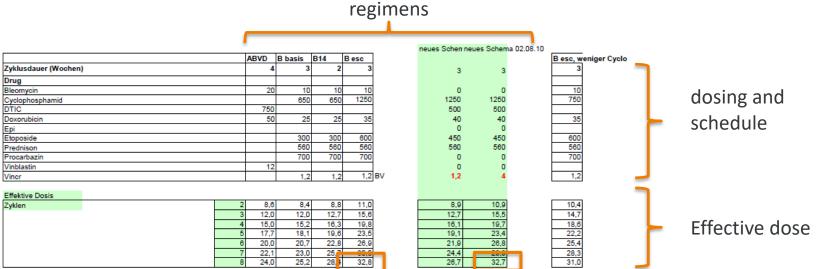
| GHSG | HD9 | study <sup>1</sup> |
|------|-----|--------------------|
|------|-----|--------------------|


| Study                         | Group                      | n   | 5-year<br>PFS (%) | 5-year<br>OS (%) |
|-------------------------------|----------------------------|-----|-------------------|------------------|
| EORTC IG                      | ABVD                       | 275 | 69                | 86.7             |
| 20012 <sup>2</sup> IPS 3-7    | DLACOIT                    |     | 84                | 90.3             |
|                               |                            |     |                   |                  |
| 17/04 112 43                  | ABVD                       | 77  | 75                | 92               |
| LYSA H34 <sup>3</sup> IPS 0–2 | BEACOPP<br>(4 esc + 4 std) | 68  | 93                | 99               |

- eBEACOPP improves survival and reduces the risk of refractoriness and early progression for all patients ad regardless of the IPS!
- But many patients are being overtreated to achieve good outcomes for all patients.

## Tailoring therapy: individualized eBEACOPP dosing since 1994

- leukopenia for more than 4 days (leukocytes < 1000/mm3)</li>
- thrombocytopenia < 25.000/mm3 on one or more days
- Infection CTCAE grade 4
- Other CTCAE grade 4 toxicities, e.g. mucositis
- Treatment delay of more than 2 weeks due to inadequate recovery of blood values
- If one or more toxic events occur in a given cycle, the dose in all following cycles has to be reduced by one dose level.
- If toxicity events occur in two successive cycles, the doses are reduced to baseline level.


#### GHSG guidlines for dose reduction of Cyclo, Doxo, and Eto with BrECADD



|                        | DL4  | DL3  | DL2 | DL1 | BL  |
|------------------------|------|------|-----|-----|-----|
| Cyclophosphamide mg/m² | 1250 | 1100 | 950 | 800 | 635 |
| Doxorubicin mg/m²      | 40   | 40   | 40  | 40  | 35  |
| Etoposide mg/m²        | 150  | 125  | 100 | 100 | 100 |

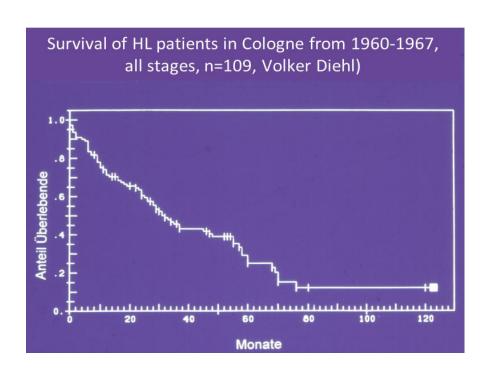


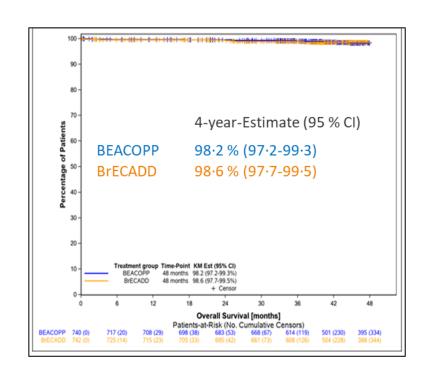
## How BrECADD has been developed using the "Hasenclever model"



<sup>\*)</sup> max 2mg pro Zyklus, daher werden für einen durchschnittlichen Erwachsenen nur 1,2mg/m gerecimet

| Drug            | Weight (old) | 1    | Weight |        |          |         |        |            |            |        |
|-----------------|--------------|------|--------|--------|----------|---------|--------|------------|------------|--------|
|                 |              | (    | 4/06)  |        |          |         |        |            |            |        |
| Bleomycin       |              | 18   | 18     | 1,1111 | 0,555556 | 0,55556 | 0,5556 | 0          | 0          | 0,5556 |
| Cyclophosphamid |              | 1238 | 1408   | 0      | 0,461648 | 0,46165 | 0,8878 | 0,88778409 | 0,88778409 | 0,5327 |
| DTIC            |              | 7708 | 7708   | 0,0973 | 0        | 0       | 0      | 0,06486767 | 0,06486767 | 0      |
| Doxorubicin     |              | 25   | 25     | 2      | 1        | 1       | 1,4    | 1,6        | 1,6        | 1,4    |
| Etoposide       |              | 491  | 491,5  | 0      | 0,610376 | 0,61038 | 1,2208 | 0,9155646  | 0,9155646  | 1,2208 |
| Prednison       |              | 574  | 517    | 0      | 1,083172 | 1,08317 | 1,0832 | 1,08317215 | 1,08317215 | 1,0832 |
| Procarbazin     |              | 1235 | 1235   | 0      | 0,566802 | 0,5668  | 0,5668 | 0          | 0          | 0,5668 |
| Vinblastin      |              | 9,3  | 6,55   | 1,8321 | 0        | 0       | 0      | 0          | 0          | 0      |
| Vincr           |              | 3,65 | 2,47   | 0      | 0,48583  | 0,48583 | 0,4858 | 0,48582996 | 1,6194332  | 0,4858 |


weight of specific drugs




Berechnungsteil:

<sup>\$) 500</sup>mg feste Dosis, daher analog Vincristin auf Dosis/m² umgerechnet, von Dirk Hasenclever in 4/06 nicht berücksichtigt

## The role of chemotherapy in HL, a chemo-sensitive disease







## GHSG HD21 Older Cohort: Study Design

Prospective, international, multicenter, single-arm add-on cohort to the HD21 trial



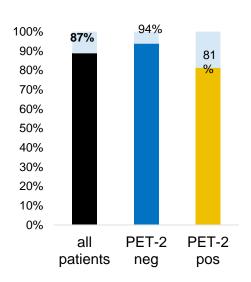
#### **Trial objectives**

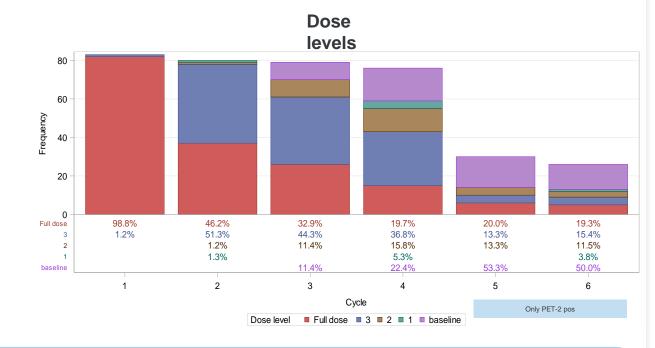
- Primary: Estimate efficacy of PET-guided BrECADD defined as CR rate after chemotherapy (primary endpoint).
- Secondary: Further explore efficacy, safety and feasibility of PET-guided BrECADD in older patients.



#### **Baseline Characteristics**

ITT population (n=83)

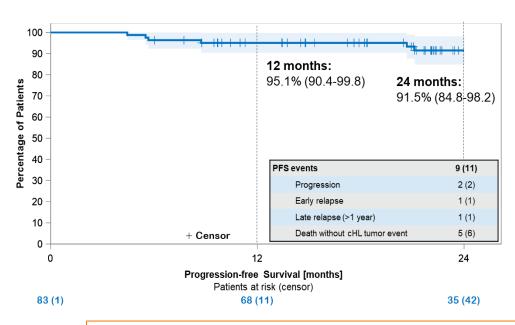

| Characteristic       |                                     | No. (%)                        |
|----------------------|-------------------------------------|--------------------------------|
| Age                  | Median (IQR, range)                 | 67 (63 – 70, 61 –<br>75)       |
| Sex                  | Female<br>Male                      | 32 (39)<br>51 (61)             |
| CIRS-G Sum Score     | Mean (SD)<br>Median (range)         | 3.7 (2.7)<br>3 (0 – 10)        |
| Comorbidities        | Absent<br>Present                   | 11 (13)<br>72 (87)             |
| ECOG                 | 0<br>1<br>2                         | 39 (47)<br>29 (35)<br>15 (18)  |
| Frailty <sup>1</sup> | 0 (fit)<br>1-2 (unfit)<br>3 (frail) | 43 (52%)<br>38 (46%)<br>2 (2%) |
| Ann Arbor Stage      | II<br>III<br>IV                     | 3 (4)<br>35 (42)<br>45 (54)    |
| IPS                  | 0-2<br>3-7                          | 22 (27)<br>61 (73)             |


#### Summary

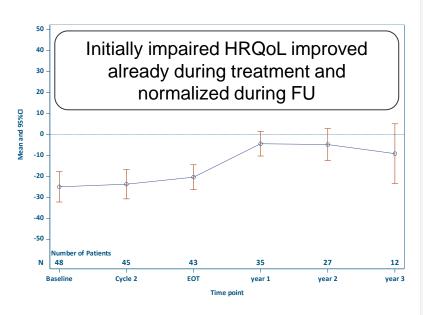
- > 83 patients included in the ITT cohort.
- ➤ Median age: 67 years (range: 61-75)
- ➤ A majority had IPS ≥3 (73%)
- Almost all presented with comorbidities (87%).
- ➤ Mean Cumulative Illness Rating Scale-Geriatric (CIRS-G) score of 3.7 (SD 2.6).
- ➤ Approx. half of the cohort unfit or frail.¹

### **Treatment completion and dose levels**



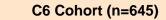


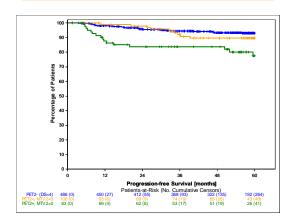




- ➤ High treatment completion rate: 87% of entire cohort
- > Supported by pre-defined, per-protocol dose reductions

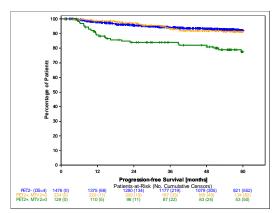
## GHSG HD21 Older Cohort: Progression-free survival

Progression-free survival, mFU 23 m

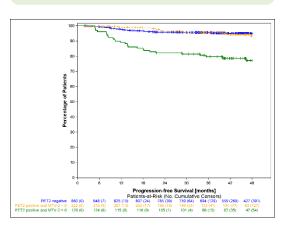




HRQoL (QLQC30)




BrECADD is very effective and safe (no TRM!) also in older patients

## Prognostic relevance of MTV-2



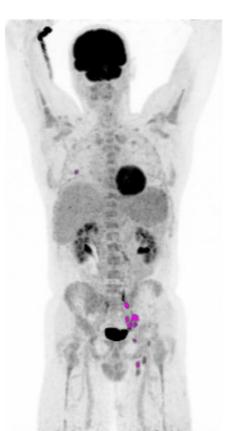


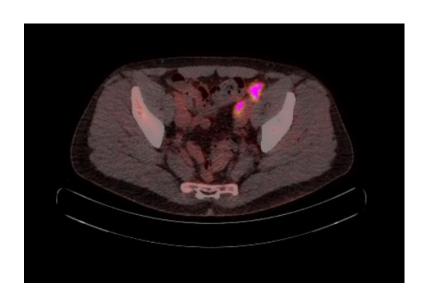

#### HD18 ITT (n=1756)



#### HD21 ITT (n=1211)




Similar PFS among **PET-negative** and **PET-positive** & MTV = **0** groups.

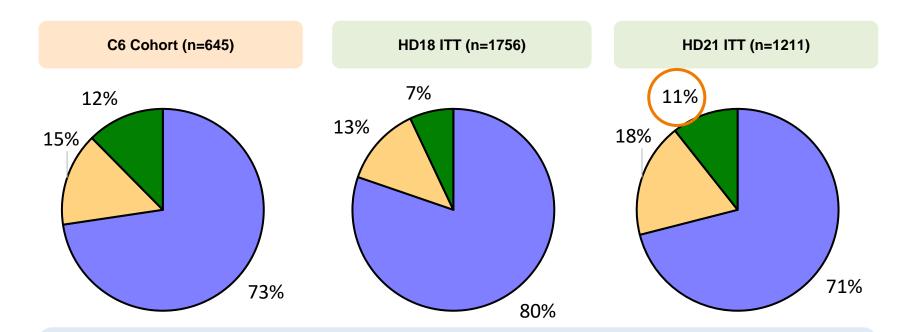

High risk of early progression with low PFS in patients with remaining MTV-2



## Can we improve on response assessment by Deauville Score? MTV-2 Measurement








Lung lesion and right inguinal and iliacal nodes with SUV > 4:

MTV-2 = 7.6 m



## Deauville score and MTV-2



Proportions of PET-negative, PET-positive & MTV = 0 and patients with remaining MTV-2 are comparable between cohorts, but slight variance is noted.

